スギ単板圧密加工材を用いた木製品の試作

山田順治*,住友将洋*,酒巻武重**

抄 録

表面にスギ単板圧密材を用いた家具部材を開発し、机、椅子のセット、座椅子を試作した。幅広の材を作製する場合は幅はぎ工程が必要となるため、圧密材はフレーム材の化粧単板として用いる方が、湾曲材も作製でき、付加価値をつけるために有利であると考えた。塗装には自然系塗料を用い、針葉樹圧密材の材質感を生かした仕上げとした。

1 はじめに

これまでに、密閉水蒸気処理によるスギ単板圧密 材の製造条件および固定効果の把握と機械的特性に ついての基礎的な試験を行い、圧密材を他材料と複 合化、積層化して、椅子、机に使用する平面材、フ レーム材(湾曲成型材)などの家具部材の開発を行った^{1、2})。

開発した家具部材を用い、学習机、椅子のセット、 湾曲フレームを用いた座椅子を試作し、塗装仕上げ について検討した。

2 試験方法

2・1 単板圧密材の製造

厚さ 2.6 mm、幅 120 mm、長さ 1000 mmのスギ単板を用い、圧密を行う前に煮沸して水分の調整を行い²)、厚さを 50 %にする圧密加工を行った。密閉加熱処理装置内で加圧後 30 分間蒸気処理を行った後、蒸気を解放した。その後も加熱し熱盤によるプレス乾燥を 30 分行いプレスを解圧した。乾燥促進のため、熱盤上に 250 メッシュ、0.3 mm厚さのステンレス網を敷いた。プレス定盤温度は 146 、プレス圧は 706kN に設定した。

2・2 机、椅子セットの試作

机の天板、椅子の座面の表面にスギ単板圧密材を 使用した。使用した部材は、単板圧密材をスギ集成 材の両面に接着したものをさらに幅はぎして製造し た。接着剤は、水性高分子イソシアネート系接着剤 を用いた。 その他の脚等の構造部にはスギ無節材 を、縁材にはメープル材を使用した。塗装には自然 系塗料の油性クリアーを用いた。

*生活科学課、**企画情報課

2・3 座椅子の試作

座椅子の背部分、湾曲材表面にスギ単板圧密材を使用した。厚さ 1.3 mmのスギ単板圧密材を表面材に、厚さ 1.5 mmのスギ単板を芯材として、厚さ 25 mm、半径 270 mmの半円形の湾曲成型積層材を作り、座椅子の背部分とした。接着剤は、尿素樹脂接着剤を使用した。座には厚さ 22mm の合板の上にウレタンクッションを布地で覆ったものを使用し、底面にキャスター付きの座椅子を試作した。試作品は 2 体とし、自然系塗料の青色系と油性クリアーを用いて塗装した。

2・4 塗装の試験

試作品の塗装スタイルは、単板圧密材の触感を生かせるように、オイルフィニッシュの仕上がりとし、自然素材を主成分としている塗料の耐光試験を行った。使用した塗料は、塗料A(ドイツA社製、油性クリアー)、塗料O(ドイツO社製、ウッドワックス#3101 ノーマルクリアー)、塗料P(ハードクリアーオイル)、塗料U(国産O社製)の4種類とした。

被塗装材は、心材及び辺材のそれぞれ無圧密材と 圧密材で、9mm 厚の合板に2回塗りの塗装を行った。

耐光性試験は、紫外線カーボンアーク灯式フェードメータで、ブラックパネル温度 63 、湿度は 50% Rh の条件で、20時間及び 40時間の照射後に分光測色計で測定し、照射前との色差 (Eab)を求めた。

3 試験結果

試作した机、椅子のセット、座椅子を図1,図2

に示す。

図1 机、椅子セット

図2 座椅子

圧密加工材は無節材が必要であり、圧密加工によりコストもかかるため、圧密材を表面材として有効に使用することが重要である。当初、ツキ板のように平面に並べて接着する方法を試みたが、厚みがあるため難しかった。このため、幅広の材を作製する場合は幅はぎ工程が必要となった。椅子等のフレーム材の化粧単板とし用いる方が、湾曲材も作製でき、付加価値をつけるために有利である。

耐光試験結果を表 1 に示す。全体的に無圧縮に比べ圧縮材の方が変色が少なかった。また、塗料別では、無圧縮の心材では塗料 U が、圧縮の心材では塗料 O がよい値を示したが、全般には試作品に使用した塗料 A が、他社にくらべ変色が少なかった。

表 1 耐光試験結果

	塗料	20時間	复 Eab	40時間征	乡 Eab
		辺材	心材	辺材	心材
無圧縮	無塗装	11.90	7.13	13.28	7.71
	Α	6.01	3.09	8.66	4.14
	0	12.99	6.97	15.55	8.34
	Р	7.67	3.63	10.19	4.83
	U	7.06	1.85	9.59	2.88
圧密	無塗装	6.54	2.01	7.62	2.33
	Α	2.02	2.90	2.45	2.39
	0	5.70	2.19	7.23	2.28
	Р	2.92	3.27	3.41	2.96
	U	2.50	3.90	2.90	3.63

4 まとめ

圧密材製造方法の改良により、家具材料としての 実用化の可能性は高くなった。圧密加工は無節材が 必要であり、圧密加工によりコストもかかるので、 表面化粧材として有効に使用していくことが重要で ある。本研究では、天然系塗料を用いた塗装仕上げ とし、針葉樹圧密材の材質感を生かした高級感のあ る試作品を作製することができた。

参考文献

- 1)山田順治・住友将洋:「水蒸気処理によるスギ 単板圧密加工」、徳島県立工業技術センタ - 研究報 告、Vol.10、PP1-3(2001)
- 2)山田順治・住友将洋・酒巻武重:「スギ圧密加工材の製造」、徳島県立工業技術センタ 研究報告、 Vol.11、PP39-40(2002)